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Abstract

In the first section we present a simple argument showing that Galileo’s ac-
count of his pendulum experiments given in the Discorsi cannot be faithful
with regard to his statement of isochronism. In the second section we in-
vestigate the sense in which the true, hyperbolic curve of the hanging chain
is approximated by a parabolic curve, which Galileo thought would exactly
describe ballistic trajectories and hanging chains alike.

1 On Galileo’s Exaggerations

That Galileo somewhat exaggerated the outcome of experiments described in his
Discorsi is often suspected. Leaving alone the question as to why this might
happen, it seems useful to also produce some precise quantitative estimations of
such suspected exaggerations. This we shall do in this appendix for the famous
case concerning the isochronism of the pendulum. Compare e.g. Drake (1990),
chapters 1 and 14.1 Our estimations will be based on theexactformula for the
period of a pendulumwithout friction.2

∗Published in: J̈urgen Renn (editor) “Galileo in Context”, Cambridge University Press (Cam-
bridge 2001)

1For example, with respect to this example S. Drake states on p. 210-211 that “when the arc to
the vertical for the pendulum having the wider swing is no more than25◦, the difference in times
for it and the other pendulum is not very great and it keeps on diminishing.” After all, the following
quantitative estimation shows that such differences are observable after at most 20 swings.

2Friction has two effects: 1) It leads to an exponential damping of the amplitudes, 2) it en-
hances the period by an amount depending on the damping. The first affects our considerations
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In a famous part towards the end of the first ‘day’ of theDiscorsi (Galilei
1974), Galileo (i.e., Salviati) gives the following account of an experiment:

“Ultimately, I took two balls, one of lead and one of cork, the former
being at least a hundred times as heavy as the the latter, and I attached
them to equal thin strings four or five braccia long, tied high above.
Removed from the vertical, these were set going at the same moment,
and falling along the circumferences of the circles described by the
equal strings that were the radii, they passed the vertical and returned
by the same path. Repeating their goings and comings a good hundred
times by themselves, they sensibly showed that the heavy one kept
time with the light one so well that not in a hundred oscillations, nor
in a thousand, does it get ahead in time even by a moment, but the
two travel with equal pace. The operation by the medium is also
perceived; offering some impediment to the motion, it diminishes the
oscillations of the cork much more than those of the lead. But is does
not make them more frequent, or less so; indeed, when the arcs passed
by the cork were not more than five or six degrees, and those of the
lead were fifty or sixty, they were passed over in the same times.”

Taking for thebraccio 0.6 meters and hence the length of the pendulum be-
tween 2.4-3.0 meters, we see that we talk about periods certainly larger than 3
seconds.

The amplitudeα is taken to be the angle between the thread of the pendulum
and the vertical (direction of the gravitational field). The exact expression for the
periodT as function ofα is an elliptic integral of first kind whose expansion in

insofar as we will calculate accumulated phase differences for pendulums of substantially different
amplitudes. Hence we must check that the actual damping indeed allows to maintain such a differ-
ence in amplitudes for the considered periods of accumulation. Regarding 2) we need to estimate
this effect since it threatens to level our calculated phase difference which is solely based on the
enhancement of the period with amplitude. Applied, as below, to a situation of two pendulums,
one with large amplitude and small damping, the other with smaller amplitude because of stronger
damping, we see thatboth pendulums will suffer an enhancement of their periods, albeit from
different sources. However, the estimation of the enhancement due to damping is easily done and
shows that a levelling of these two effects does not occur. To see this, letσ denote the number
of full swings after which the amplitude has dropped by a factor ofe−1, the difference∆T to the
undamped periodT is then given by∆T/T = (8π2σ2)−1 (plus higher powers in(2πσ)−2, which
we can safely neglect). Hence the corresponding number of swings after which a phase difference
of 2π/n to the undamped pendulum has occurred is given byÑn = σ2 8π2/n. Note in particular
thequadraticdependence onσ and the relatively large prefactor8π2 ≈ 79. This means that even
for a considerable damping, likeσ = 5, we would have to wait around 200 full swings to see a
phase difference to the undamped pendulum of2π/10. This is a much smaller effect than the one
discussed below.
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terms ofsin(α/2) begins as follows (A. Sommerfeld, Mechanics):

T (α) = 2π
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Hence the period increases with the amplitude resulting in the lead-pendulum
falling behind the cork-pendulum. We denote byNn(α) the smallest integer num-
ber of full swings beyond which a pendulum of constant amplitudeα will have
fallen behind a time of at leastT/n against a pendulum of period sufficiently
close toT := 2π

√
l/g (i.e. of sufficiently small amplitude, like3◦). AfterN4 full

swings the phase difference is at leastπ/2 and certainly detectable by be naked
eye, since then the pendulums start to move in opposite directions. More careful
but still unsophisticated observations should reveal deviations from synchrony by,
say, one tenth ofT , that is, afterN10 swings.3

By definition ofNn(α) we have

Nn(α) = smallest integer≥ T

n · (T (α)− T )
. (2)

Using (1) we get for the various values ofα andn = 4 or n = 10:

α 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 70◦ 80◦

N4 132 59 33 21 15 11 9 3 2
N10 53 24 14 9 6 5 4 2 1

From these values we infer that a situation with amplitudesαlead = 25◦ and
αcork = 3◦ certainly cannot have appeared synchronous for longer than about
20 full swings.

The situations becomes even more drastic in a later description of a similar
experiment, reported shortly after the beginning of the fourth day (Galilei 1974,
p 226). In this second experiment two balls of lead are suspended on equally
long strings of 4-5 braccia and the periods compared for amplitudesα1 = 5◦

andα2 = 80◦ (!). Here again the assertion is that no deviations from synchrony
could be detected, whereas our values forN4 show that it must have been clearly
apparent after 3 full swings the latest. After 4 full swings the two pendulums
will even cross the origin approximately simultaneously with oppositely directed
velocities.4

3For example, by letting two separate experimenters count and voice the passages of zero
amplitude for the two pendulums respectively. Such a method is in fact suggested in theDiscorsi
(Galilei 1974, p. 227).

4In Galilei (1974), footnote 12 on page 227, S. Drake states that “a disagreement of about one
beat in thirty should occur with pendulums of length and amplitudes described here”. Unfortu-
nately he did not state how he arrives at this result, which, seen from our analysis, seems to be an
underestimation of the real effect by more than a factor of 3.
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2 Theory of the Hanging Chain and its Parabolic
Approximation

We first describe the modern theory of the hanging chain, calledTex, in terms of
Newtonian concepts, and then its approximation, calledTap, for small slopesy′.
The latter gives rise to parabolic shapes, as the former would if the mass distribu-
tions were constant along the horizontal projection of the chain rather than along
the chain itself. On the level of physical quantities (“Observables”) this approx-
imation corresponds to expansions in terms ofd

D
to various degrees, depending

on the observable, where2D = horizontal distance of the suspension pointsand
d = sag, i.e. the length of the perpendicular from the horizontal line joining the
suspension points to the lower apex.

2.1 The Exact TheoryTex

We will think of the hanging chain as being given by a functiony(x) in a Cartesian
xy-plane. A point in this plane is denoted by its coordinates(x, y), so that the
curve is the set of points(x, y(x)), wherex ranges over an interval which we take
to be[−D,D]. y′ andy′′ denote the first and second derivatives ofy with respect
to x.

The fundamental equation for the theory of the chain is obtained from a simple
and typical argument based on a local application of the principle ofbalance of
forces. To do this, we imagine the chain being cut at(x, y(x)) and consider one
end. We denote byF (x) the strength of the force that one would have to apply to
one end in order to keep the corresponding part of the chain in its place. This is
also called the chain’s tension. We can decomposeF (x) into a horizontal compo-
nentFh(x) and a vertical componentFv(x). Since by definition a chain can only
support tangential forces, these components must satisfy

y′(x) =
Fv(x)

Fh(x)
. (3)

If the external force (gravitation) has no horizontal component,Fh(x) must in fact
be independent ofx. Otherwise a piece of chain with different strengths of the
outward pointing horizontal forces could not stay at rest; hence

Fh(x) = Fh = const. (4)

Differentiating (3) once more then leads to

y′′(x) =
F ′v(x)

Fh
. (5)
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It is now easy to express the right hand side of (refeq:B2) as function ofx and
y′(x), sinceFv(x + dx) − Fv(x) must clearly be equal to the weight of the piece
of chain between(x, y(x)) and(x + dx, y(x + dx). If we denote byµ the mass
per unit length of the chain, which we take to be constant5, then its weight is given
by µg ds(x), whereds(x) =

√
1 + [y′(x)]2 dx is the length of the (infinitesimal)

piece of chain that we consider. Hence (5) results in

y′′√
1 + [y′]2

=
1

h
:=

µg

Fh
, (6)

which is our fundamental equation definingTex [‘ex’ for exact].
Upon integration with boundary datay(x = ±D) = 0 one obtains the famous

cosh-form6

y(x) = h [cosh(x/h)− cosh(D/h)] . (8)

For an engineer, say, it would be more appropriate to eliminate the non geometric
parameterh in favour of thelengthL of the chain, given by

L =

∫ D

−D
dx
√

1 + [y′]2 = 2h sinh(D/h) , (9)

or its sag

d := −y(x = 0) = −h [1− cosh(D/h)] = 2h sinh2(D/2h) , (10)

i.e., to solve (9) forh(L,D) or (10) forh(d,D) respectively, and insert this into
(8). But this cannot be done in terms of elementary functions. Hence (8)(9) or
(8)(10) should be thought of asimplicit representation of the hanging chain as
function of the parametersL,D or d,D respectively.

Finally, the total tensionF (x) of the chain is easily computed:

F (x) =
√
F 2
h + F 2

v (x) = Fh
√

1 + [y′(x)]2 = µgh cosh(x/h), (11)

which, using (8), can also be read as saying thatF grows linearly iny.
5The following formula (6) remains valid for variableµ. It then implies that the hanging chain

can be made to assumeanyconvex shape by lettingµ > 0 vary appropriately along the chain.
6An equivalent form, obtained by applying the addition laws forcosh-functions, is

y(x) = 2h sinh((x+D)/2h) sinh((x−D)/2h) . (7)
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2.2 The Approximating Theory Tap

Galileo’s approximative modelling of the hanging chain by a parabola can be un-
derstood within the larger context of anapproximation of theories. It is obtained
asfirst approximation of the fundamental equation (6) for small slopesy′. Such
approximations clearly make sense only fory′ < 1, which is just the regime for
which the parabolic approximation of the hanging chain is claimed in the relevant
part of theDiscorsi (pages 256-257 of Galilei (1974); see Renn at al. (2001),
citations on pages 36-38. Hence we expand the square-root in (6) in terms of
powers ofy′ and truncate the second and all higher powers. But sincey′ appears
already in squared form under the square-root, this amounts to simply replacing
this square-root by 1.From the derivation of (6) it is clear that this is equivalent
to taking the linear mass-distribution as homogeneously along the x-axis instead
along the proper length. This, in turn, is precisely the [implicit] assumption that
underlies the application of Galileo’s results on the distribution of moments along
a solid and homogeneous cylindrical beam which rests horizontally supported at
both ends; see Renn at al. (2001), p. 120.In first approximation one simply ex-
pands (6) in terms of powers ofy′ discarding the second and all higher powers.

The fundamental equation that defines the approximating theoryTap is now
simply given by:

y′′ =
1

h
, (12)

and for the same boundary data as above one obtains

y(x) =
1

2h

(
x2 −D2

)
. (13)

Formally this corresponds to a quadratic expansion of thecosh-function in (8) in
terms of the dimensionful parameter1/h, which should be understood as expan-
sion in terms of a dimensionless parameter( 1

h
)× (intrinsic length)∼= D/h. The

sag,d, is now given by the simple formula

d =
D2

2h
, (14)

which, in contrast to the exact theory, can now be easily solved forh. This allows
us to explicitly parameterise the curve by the geometric quantitiesd andD. An
expansion in terms ofD/h is hence equivalent to an expansion in terms ofd/D.

Note that in general it will not be the case that the exact expressions of an
approximating theory are certain approximations of the exact theory, but only that
simultaneous expansions inboththeories coincide up to some order. For example,
the expression for the lengthL in Tap has the complicated structure

L =

∫ D

−D
dx
√

1 + (x/h)2 = D
[√

1 + (D/h)2 + (h/D) arsinh(D/h)
]
, (15)
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but the quadratic expansions of (9) and (15) in terms ofd/D (i.e. in terms ofD/h
and thenh eliminated by using (14)) both lead to

L = 2D

[
1 +

2

3

(
d

D

)2
]
. (16)

The same holds for the total tension, which inTap takes the form

F (x) = µgh
√

1 + (x/h)2, (17)

whereas the quadratic expansions von (11) and (17) in terms ofd/D coincide in
the following “engineer-formula”

F (x) = µg
D2

2d

[
1 + 2

( x
D

)2
(
d

D

)2
]
. (18)

Finally we can raise the question how to grade the quality of the approximation
of Tex by Tap. This can be done for each observable (here observables are e.g.
y(x), d, F (x) andL) by looking at the orders of the first non-vanishing correction
of Tap byTex. LetOex andOap be the values of an observable on “corresponding”
[see below] solutions of the fundamental equation ofTex andTap respectively.
Then one considers

∆(O) :=
Oex −Oap

Oex

, (19)

and defines as usualo(∆(O)) to be that integer which characterises the leading
order in the expansion of∆(O) with respect to the expansion parameter (here
d/D). The gradeg(O) of the expansion can then be defined as

g(O) := o(∆(O))− 1 . (20)

In our case we obtain

g(y(x)) = g(d) = 1, g(F (x)) = g(L) = 3. (21)

From the definition ofTap together withy′ = sinh(x/h) = x/h + ... one could
not have expected a grade of approximation better than 1 [linear approximation].
But, as we just saw, the approximation might come out to be much better. This
mirrors a well known phenomena in physics: that some formulae “are better than
their derivation”. In our case this is for example true for the tension (formulae
(17)(18)), which deviates from the exact expression only infourth order in d/D
(they slightlyunderestimatethe real tension).
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Finally we wish to comment on the notion ofcorresponding solutions. In
order to define a correspondence one has to make a choice of preferred observ-
ables whose values uniquely fix solutions of the fundamental equations (6) and
(12). Solutions with coinciding values on these observables are then defined to
correspond to each other. Such a definition should therefore always be thought
of asrelative to the choice of preferred observables. So, for example, for given
horizontal distance2D of the suspension points one may either take the horizontal
tensionFh (as we did) or the lengthL or the sagd to fix the solution. A non-trivial
consequence of this general observation is, that the grade of an approximation of
some observable will in generaldependon the choice of preferred observables
which are used to fix the solutions.
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